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ABSTRACT: The contribution of volatile aroma compounds to the overall composition and sensory perception of wine is well
recognized. The classical targeted measurement of volatile compounds in wine using GC-MS is laborious and only a limited
number of compounds can be quantified at any time. Application of an automated multivariate curve resolution technique to
nontargeted GC-MS analysis of wine makes it possible to detect several hundred compounds within a single analytical run.
Hunter Valley Semillon (HVS) is recognized as a world class wine with a range of styles. Subtle characters reliant upon the
development of bottle maturation characteristics are a feature of highly esteemed HVS. In this investigation a metabolomic
approach to wine analysis, using multivariate curve resolution techniques applied to GC-MS profiles coupled with full descriptive
sensory analysis, was used to determine the objective composition of various styles of HVS. Over 250 GC-MS peaks were
extracted from the wine profiles. Sensory scores were analyzed using PARAFAC prior to development of predictive models of
sensory features from the extracted GC-MS peak table using PLS regression. Good predictive models of the sensorial attributes
honey, toast, orange marmalade, and sweetness, the defining traits for HVS, could be determined from the extracted peak tables.
Compound identification for these rated attributes indicated the importance of a range of ethyl esters, aliphatic alcohols and
acids, ketones, aldehydes, furanic derivatives, and norisoprenoids in the development of HVS and styles. The development of
automated metabolomic data analysis of GC-MS profiles of wines will assist in the development of wine styles for specific
consumer segments and enhance understanding of production processes on the ultimate sensory profiles of the product.

KEYWORDS: multivariate curve resolution alternative least-squares (MCR-ALS), Semillon wine, sensory, partial least-squares (PLS),
volatile compounds, parallel factor analysis (PARAFAC)

■ INTRODUCTION

Flavor and aroma chemists have attempted to ascertain the
most important chemical constituents contributing to the
aroma perception of specific products, and mapping the
concentration of these compounds to consumer preference
remains the driver of research in consumer product aroma
quantification. Flavor is an individual consumer’s perception of
the complex interactions of tactile and aroma compounds
present in a food, and mapping these interactions to
compositional data is an enormously challenging task.
In terms of aroma, compounds are typically described in

relation to their concentration, chemical class, perceived odor
description, odor thresholds in a matrix of similar composition
to the food of interest, and the odor activity value (OAV). The
OAV is calculated as the ratio of the quantified value of the
compound in the food to the odor threshold, with values
greater than one considered to impart contribution to the
perceived odor of the food.1 Significant limitations in the
interpretation of OAVs arise. First, the determination of aroma
thresholds is subjective and prone to considerable imprecision
depending upon assessor experience and the matrix used to
present the compound to assessors.1 Also, compounds with an
OAV less than one are considered to have little or no
immediate impact on the aroma of a food or beverage;
however, the notion of odor families2 and the synergistic or
suppressive interactions of compounds with similar functional

groups to food and beverage aroma is not accounted for solely
by the use of OAV.3

Significantly some compounds in low concentrations and
with OAV greater than one may contribute positively to
product aroma, but when present at high concentrations, their
odor contribution to the overall product may become dominant
and negatively correlated with product acceptance. Such
observations have been reported for specific marker com-
pounds associated with minty, eucalyptus aromas,4 or yeast
spoilage characters5 in wine. Alternatives and adjutants to OAV
such as aroma extract dilution analysis,6 CHARM,7 and other
methods that employ olfactory detection during gas chroma-
tography are important contributors to the understanding of
aroma compound concentrations and sensory perception.
Each of the above approaches requires considerable invest-

ment of time and personnel for the determination of discrete
analytical values for compounds of interest in a sample. The
application of multivariate curve resolution (MCR) techniques
makes it possible to decompose complex and information-rich
data sets to matrices corresponding to concentration and
spectral profiles.8−11 This approach circumvents the require-
ment for a priori information regarding the presence of specific
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analytes in the sample and expedites data analysis. Extracted
concentration profiles can be used in multivariate data analysis
pertaining to metabolomic composition, and if descriptive
sensory data are available predictive models of the sensory
attributes could be constructed. Such models will then enable
the identification of compounds with important sensory
features for the product, assist in the elucidation of
manufacturing processes which influence their concentration,
and shed light on the process associated with product
development and manufacture.
In this investigation we report a novel and comprehensive

semi-automated data analysis approach using MCR applied to a
GC-MS data set of Hunter Valley Semillon (HVS) wines and
map these results to sensory features obtained by descriptive
sensory analysis. This is the first report of the use of
multivariate curve resolution techniques applied to the analysis
of GC-MS data with subsequent analysis to create predictive
models of the sensory features of wines. This approach enables
us to report for the first time the identification of important
compositional aspects of the wines and establish objective
measures of some sensory properties.

■ EXPERIMENTAL SECTION
Chemicals. All chemicals were of analytical grade and purchased

from either Sigma-Aldrich Australia or Fluka Australia. Deionized
water (18 MΩcm−1) was prepared using a Milli-Q filtration system.
Ultra-high-purity helium was obtained from BOC gases, Australia.
Sensory Descriptive and Exploratory Data Analysis of

Wines. The wines used in the present study (Table 1) were part of

a larger investigation which first characterized HVS and subsequently
examined the impact of bottle age on the wine’s sensory character-
istics.12,13 This particular sensory data set was collected during a
repeated appraisal of the wines after an additional three years of cellar
maturation. A total of 16 different wines were examined using sensory
descriptive analysis. Full details of the sensory aspects of these wines,
panel training, and data collection are described elsewhere12 and will
be described here only briefly. Sixteen appropriately trained panelists
rated the wines sensory features in triplicate in twelve tasting sessions

held over a two-week period. The Compusense program generated
random three-digit identification numbers for each wine at each
session. The order of presentation of the wines was determined using a
randomized complete block design. Sensory data were modeled using
Parallel Factor Analysis (PARAFAC)14,15 as the assessors responses
can be considered a four-dimensional structure of dimensions 16
(samples) × 15 (sensory attributes) × 48 (16 × 3; sensory assessor ×
replicate). The data were mean centered across mode 1, and no scaling
was applied as it can be reasonably expected that sensory data will have
similar variances as the same scale has been used during evaluations.15

PARAFAC models extracting decreasing numbers of components,
commencing with 4 factors, were fitted to the sensory data until the
core consistence results had stabilized.14,16 Factor loadings from the
model were plotted to visualize the relationship between samples and
sensory attributes. To assess the quality of the loadings, the residual
sum of squares for each mode (samples, attributes, and assessors) were
used and variables exceeding the 99% confidence interval (CI) were
flagged as those that were poorly fitted. Assessors whose responses
exceeded the 99% CI of the model were removed and the PARAFAC
model was recomputed with the remaining data. A sample replicate
mean sensory score was computed from the remaining assessor
sensory scores for each sensory attribute and this was used for
regression modeling.

Wine Sample Extraction and GC-MS Analysis. Wines were
assessed, extracted, and analyzed in random order on the same day of
sensory panel appraisal to minimize compositional variations between
sensory and analytical replicates. Prior to extraction, 50 mL of wine
was spiked with 50 μL of internal standard (IS) comprising 3-tert-
butyl-4-hydroxyanisole to give a final concentration of 4000 μg L−1.
Samples were extracted with LiChrolute-EN cartridges (Merck) as
described previously.17 Briefly, solid-phase cartridges were conditioned
with 4 mL of each of the following solvents: dichloromethane,
methanol, and 12% ethanolic aqueous solutions. The wines were
passed through each cartridge at approximately 2 mL min−1, followed
by a rinse with 2 mL of 12% ethanol aqueous solution and dried using
low pressure (approximately −0.3 bar for 15 min). The retained
components were eluted with 1.5 mL of dicholormethane and spiked
with 25 μL of IS mix comprising 2-octanol and 4-hydroxy-4-methyl-2-
pentanone to give final concentrations of 6670 and 6713 μg L−1,
respectively, transferred to sample vials, and capped for storage at 4 °C
until analysis was conducted.

For GC-MS analysis, 1 μL of extract was injected into an Agilent
7890 gas chromatograph fitted with a 60 m × 0.25 mm internal
diameter fused-silica capillary column with a 0.25-μm wax (DB-
WAXetr) stationary phase (J&W Scientific, Folsom, CA) using a
Gerstel MPX autosampler with a Peltier tray cooler at 4 °C. The
injector temperature was 240 °C; septum purge flow was 3 mL min−1,
and the split ratio was 10:1. The helium flow rate through the column
was 1.5 mL min−1 with an average velocity of 31 cm sec−1; the column
temperature was held at 40 °C for 5 min, then increased at 2 °C min−1

to 210 °C and held for 20 min. Mass spectra were collected at a scan
rate of 4.4 s−1 using an Agilent 5975C mass detector operating in
electron ionization mode, scanning from 35 to 350 m/z with a
detection threshold of 100. The detector was switched off between
6.60 and 8.65 min during efflux of solvent. Transfer line temperature
was set to 210 °C, source temperature was 230 °C, and quadrapole
temperature was 150 °C. Total elution time during which mass spectra
were collected for each sample was 110 min.

Multivariate Curve Resolution Alternating Least Squares
(MCR-ALS) Analysis of GC-MS data. All GC-MS files were exported
in three-dimensional csv format from MSD Chemstation version
E.02.00.493 for processing in MATLAB version R2011b (Mathworks,
Natick, MA) where all data treatments procedures were performed.
The total ion chromatogram (TIC) for each sample was overlaid
without spectral alignment to enable identification of appropriate time
windows for automated processing. Although this process required
inspection of all samples, it is the only manual component of the peak
area integration and spectral extraction process and takes less than 30
min to inspect the entire data set. Each time window was selected on
the basis of a stable baseline and that incorporated peaks of a similar

Table 1. Wine Sample Details and Allocation in Calibration
and Independent Test Sets Used for Predictive Modeling

number of sample replicates

wine code vintage wine stylea calibration set independent test set

A 2001 4 2 1
B 2005 2 2 1
C 2002 4 2 1
D 2006 2 2 1
E 2006 2 2 1
F 2006 3 1 2
G 2006 2 2 1
H 2003 3 2 1
I 2002 4 1 2
J 2006 2 2 1
K 1996 4 2 1
L 2004 4 2 1
M 2006 1 2 1
N 2005 2 2 1
O 2002 3 2 1
P 1998 4 1 2

aWine style is indicated according to Blackman and Saliba.12Style 1
characterized by residual sugar, styles 2 and 3 characterized by fruit
flavor spectrum, and style 4 characterized by bottle age.
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profile height, across an average elution time of approximately 1.5 min.
Files were processed using a modified approach to published
procedures.18 Each m/z channel was smoothed by subtracting the
minimum value and filtered by convolution using a vector of size 7.
Convolution is advantageous in that the signal is linearly filtered and
shift invariant thereby retaining elution time profiles. A smoothed and
corrected TIC for each sample was then determined from the sum of
each m/z channel in the time window, and this profile was used for
alignment of elution profiles using the maximum cross-correlation
approach with the mean sample as the target vector.19 The sample
shift from the alignment of the TIC was then applied on a sample-by-
sample basis to each m/z channel to align all sample elution profiles
within the time window thereby creating an aligned three-dimensional

matrix (elution time*m/z channel*sample). A two-dimensional matrix
representing the mean m/z elution profile was then used to determine
the number of interesting features (peaks) within the time window.
The number of features was determined by principal component
analysis (PCA) of the transformed matrix; an offset of 1 was added to
all m/z channels which were then down weighted by log10 transform,
mean centered, and variance scaling using the Pareto equation prior to
PCA. This approach accommodates the number of peaks observed
within the time window without overestimating features of
interest.11,20 To enable the iterative MCR-ALS procedure, an initial
estimate of either peak intensity or spectra is required. Spectra
associated with each peak of interest were estimated with the
SIMPLISMA approach21 using the PURE algorithm. Estimated spectra

Figure 1. TIC elution profiles are examined to identify time windows based upon peak profiles. Each time window is then automatically processed
separately by smoothing, background correction, and TIC peak alignment. The TIC shift is then applied to each sample m/z channel to create a 3D
matrix of aligned spectra for the time window. PCA of the mean TIC is used to determine the number of peaks in the time window along with an
initial estimate of spectra. The unfolded aligned spectral matrix is then processed by MCR/ALS to extract pure spectra and peak areas for each
sample. This process is repeated for each time window. Spectra are exported to NIST for preliminary compound identification, and sample peak
areas are collated for further data analysis.
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were then passed along with the column augmented elution profile of
all samples (elution time*(samples*m/z)) in the time window to the
MCR-ALS algorithm.10 MCR-ALS iteratively determines the matrix
concentration (C) and spectral (S) profiles of interesting features by
solving the classic least-squares matrix equation

= +X CS ET (1)

where X is a matrix of the unfolded elution time window of
dimensions N (elution time) by J (samples (K)*m/z scans (L)); C is a
matrix of concentrations of dimensions (N*K) by R (number of
features or peaks to be determined), i.e., the chromatographic profile;
S are the spectral profiles of dimensions R by L, and E are the residual
errors (N by J).
To solve this problem, the MCR-ALS approach iteratively solves for

C and S using the following equations:

= −C XS S S( )T 1 (2)

= −S X C C C( )T T 1 (3)

where superscript T and −1 represent the transposed and
pseudoinverse matrices, respectively. Thus for each iteration an
updated estimate for both C and S can be obtained until the solution
converges and the residual matrix remains unchanged. For each
iteration of the ALS process constraints must be applied to the
concentrations and spectra such that C must always be positive, all
negative values replaced by zero; C is unimodal for all samples; elution
time profiles for samples must not vary by more than 2.5%; S must
always be positive and of equal length. The approach for peak table
and spectral data extraction from the GC-MS files is summarized in
Figure 1.

Figure 2. PARAFAC loadings for wines and sensory attributes extracted from sensory descriptive analysis. Wines are coded by letter as identified in
Table 1
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Spectral libraries of peaks derived from MCR-ALS were exported
from Matlab in a format compatible with the National Institute of
Standards and Technology (NIST) Mass Spectral Search Program
(version 2.0) using purposely written scripts. Identification of target
compounds of interest and internal standards was conducted by
matching the extracted spectra with the NIST−08 Library, and
confirmed using published retention time indices and/or pure
compounds run in identical GC-MS conditions. Retention indices
were determined by analyzing an alkane standard mix (C8−C32 n-
alkane) in hexane using the same oven ramp and gas flow conditions.
Analysis of GC-MS Peak Areas to Identify Interesting

Sample Groups. Extracted peak areas were preprocessed by
normalizing all peaks to the peak area associated with the injection
IS (4-hydroxy-4-methyl-2-pentanone) to eliminate minor injection
discrepancies between samples and then to the peak area for the IS for
extraction (3-tert-butyl-4-hydroxyanisole) to eliminate discrepancies
associated with extraction efficiency. Preprocessing of peak areas was
done as described above prior to PCA. Peaks associated with the IS
were excluded from the PCA. Interesting sample groups were
identified in scores plots, and a nominal cutoff of 0.9 times the
highest absolute loading value for a specific principal component (PC)
was used to establish important peaks associated with these groups.
To facilitate interpretation of PCA models, factor rotation

algorithms were employed. Typically PCA models have loadings
rotated to maximize simplicity and assist interpretation, however, it is
also possible to rotate scores to simplicity when specific groupings of
samples are expected22 such as the present investigation. Factor
rotations may be either oblique or orthogonal and for ease of
interpretation orthogonal rotation was used as preservation of the
angular dependence of loadings and scores was maintained. Varimax
and quartimax rotations were investigated by conducting PCA on the
preprocessed peak table and then rotating the PCA model in
accordance with published methods.22

Identification of Peaks Associated with Wine Sensory
Features. The peak data table was regressed across the replicate
mean sensory values for each wine calculated following the removal of
the poorly performing sensory assessors’ results. Prior to regression,
sample replicates were assigned to either a calibration or independent
test data set to determine the predictive ability of the regression
models such that both data sets contained at least one independent
sample replicate for each different wine (Table 1) and approximately
60% of the samples were placed in the calibration set. Peak selection
within the calibration set was conducted using the forward interval
(iPLS) regression for each analyte and model combination.23

Predictive models of the sensory attributes from the peak areas were
constructed using either PLS1 or PLS2 regression analysis using the
SIMPLS algorithm with cross validation using random sample subsets

with six data splits. The number of latent variables chosen for each
model was determined from eigenvalues and inspection of the local
minima of the root-mean-square errors of calibration, cross validation,
and prediction such that each metric did not substantially deviate from
the others. Sample outlier and influence plots (data not shown) were
constructed to identify samples with Q residuals or Hotelling T2 values
exceeding the 95% confidence interval and these samples were
excluded and the regression model was recomputed.24 For PLS2
models multiple predictands were selected based upon the PARAFAC
modeling of sensory data such that attributes closely modeled by the
same loading or those with similar loading values (Figure 2) were
modeled together. For PLS models with good predictive ability, the
variables (peaks) used in the model were identified, and regression
coefficients and selectivity ratios (SR)25 were plotted to visualize the
influence of each peak on the model. The SR enabled the identification
of peaks with the most influence on the predictive models of the
sensory scores and these peaks identified using NIST database
searches of extracted spectra, matching corresponding retention
indices and injection of pure compounds where possible. The NIST
search was conducted using a maximum m/z constraint of 350 and
results were filtered to only include forward match and reverse match
results of greater than 800. All PCA and PLS regression analysis was
performed using the PLS toolbox (version 6.5, eigenvector Research
Inc., Wenatchee, WA).

■ RESULTS AND DISCUSSION

Sensory Modeling using PARAFAC. PARAFAC modeled
the sensory scores using three loadings for each mode (wine
samples, sensory attributes, and panellists). Responses from
one panellist were removed from the data cube prior to the final
model as the sum of squares of residuals for this assessor was
greater than the 99% CI (Supporting Information Figure S1).
The final PARAFAC model explained 19% of sensory data
variability with a core consistency of 94%. While this is a low
amount of explained variability, the crucial sensory features for
aged HVS are well-defined. Loading plots for modes 1 (wines)
and 2 (sensory attributes) are shown in Figure 2. Loading 1
models wine sensory features associated with bottle develop-
ment. The attributes of honey, toast, and orange marmalade
aromas are distinctive and sought-after features of quality aged
HVS wines. Wines I, K, and P have the most accentuated
developed character and the highest sensory ratings for these
characters. These three wines, together with the wines A, L, and
C are all positively located in loading 1 and belong to “style

Figure 3. (A) PCA scores of peak areas extracted by MCR-ALS with wines coded for vintage. (B) Loadings from the PCA and peak number
indicated on the vertical axis. Darker loadings indicate absolute peak loadings exceeding the 90th percentile.
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4”,12 i.e., typical of aged HVS. This group of wines contains the
oldest wines examined, ranging in vintage year from 1996
through to 2004. Loading 2 models the mouth feel sensations
of acidity and sweetness with each of these attributes at
opposing dimensions for this loading. The position of each of
these sensory features within loading 2 is to be expected, as the
presence of residual sugar moderates the perception of
acidity.26 One wine, designated M, is modeled by this
dimension and is the only wine for style 1 in the study.
Loading 3 models the remaining sensory attributes with
prominent primary fruit-derived features in the positive
segment and the typical aged sensory features possessing
negative loading values. No distinctive separation of wines
according to wine style is obvious within this dimension.
MCR-ALS Extraction of Peaks and Peak Table. A peak

area table consisting of a total of 253 peaks, including the
internal standards, was obtained from the chromatographic
profiles and this was subjected to data analysis. The extracted
peak areas ranged in several orders of magnitude and thus
logarithmic transformation and Pareto scaling was considered
appropriate to moderate the influence of compounds with large
MSD responses relative to concentration and is frequently
employed for metabolomic studies.27 PCA of the peak area
table, excluding the internal standards, shows that wines are
positioned along PC1 (Figure 3A) according to vintage and
hence bottle age. Good clustering for each wine sample
triplicate indicates that the extraction, GC-MS analysis, and
MCR-ALS analysis procedures are robust and free from
spurious results. The corresponding loading bar chart for
PC1 identifies peaks with the most significant influence upon
the PCA. A nominal value of the 90th percentile of peaks based
upon the absolute value of the largest loading from the PCA
was used to identify the most significant peaks areas (Figure

3B). The identity of the compounds associated with these
peaks was confirmed with a NIST database search of the
extracted spectra, matching Kovats retention time indices
(Table 2) and pure compounds when available. Of interest are
the positive loadings for vanillin and acetovanillone which are
usually associated with extraction from oak wood during wine
conservation. HVS however, is typically a nonoaked wine and
the presence of vanillin and acetovanillin in aged HVS suggests
other mechanisms are responsible for their formation, and low
concentrations of these compounds have been reported in
Semillon juice.35 Ferulic acid, a grape-derived hydroxycinnamic
acid, is reported to form vanillin in ethanolic solutions36 and
this may be an important mechanism in the development of
HVS bottle age character.
The majority of the important compounds have positive

loadings (Figure 3) and it can therefore be inferred that these
compounds increase in concentration during bottle age. This
group of compounds is characterized by a range of ethyl esters
of organic acids, furan based compounds, and acetoin. These
results are generally consistent with reported increases in ethyl
esters of both branched and diprotic organic acids for bottle-
aged wines,31 wines aged at different temperatures and or
duration,30,32 and measures of volatile compounds during
accelerated aging conditions of Chardonnay.33 The concen-
tration of furanic derivative compounds is also reported to
increase in wines with residual carbohydrate during aging.32,34

As some of the HVS wines in this study have considerable cellar
age it is therefore expected that the formation of these
compounds would occur during the maturation process.
HVS wine styles are generally characterized by the presence

of residual sugar (style 1), the spectrum of fruit flavor (styles 2
and 3), and bottle-aged character (style 4).12 Rotated scores
coded for wine style show a general separation of samples

Table 2. Identity of Compounds Associated with Hunter Valley Semillon Bottle Age and Wine Style Identified in PCA Plots

peaka compound CAS Kovats RI expt Kovats RI reportedb identifiedc reported aromad

62 1-pentanol 71-41-0 1213 1244 43 RI, MS, cmp balsamic
68 acetoin 513-86-0 1222 1291 44 RI, MS, cmp butter, cream
73 2-hydroxy-2-methylbutyric acid 3739-30-8 1303 1361 43 RI, MS, cmp
103 furfural 98-01-1 1412 1482 45 RI, MS, cmp bread, almond
105 2-acetyl furan 1192-62-7 1502 1511 46 RI, MS balsamic
119 2,3-butanediol (R,S) 513-85-9 1509 1582 43 RI, MS, cmp fruit
124 isobutyric acid 79-31-2 1511 1584 44 RI, MS, cmp rancid, butter, cheese
130 ethyl-2-furoate 614-99-3 1605 1599 43 RI, MS
133 ethyl decanoate 110-38-3 1606 1641 28 RI, MS, cmp grape
134 4-methyl benzaldehyde 529-20-4 1607 1644 47 RI, MS
137 ethyl methyl succinate 4676-51-1 1607 1641 48 RI, MS
153 diethyl glutarate 818-38-2 1801 RI, MS, cmp
163 2-acetyl-2-methyltetrahydrofuran 32318-87-9 1806 MS
165 benzyl alcohol 100-51-6 1900 1851 49 RI, MS, cmp sweet, flower
172 NID (MW 151)e

180 ethyl 3-hydroxy-3-methylbutanoate 18267-36-2 2001 MS
190 1H-pyrrole-2-carboxaldehyde 1003-29-8 2003 2036 50 RI, MS
201 1-methyl-1H-pyrrole-2-carboxyaldehyde 1192-58-1 2074 2112 50 RI, MS
217 NID (C13 norisoprenoid, MW 210) 2202 MS
230 triethyl citrate 77-93-0 2500 RI, cmp
231 2-furoic acid 88-14-2 2501 MS
240 vanillin 121-33-5 2504 2598 51 RI, MS, cmp vanilla
244 acetovanillone 498-02-2 2603 2685 45 RI, MS, cmp vanilla

aPeak numbering is assigned on chromatographic elution profile. bRI: published retention indices for similar stationary phase. cMS: NIST mass
spectral database match with minimum forward and reverse matching of 800. cmp: matched compound with pure standards dReported aromas from
Flavornet (http://www.flavornet.org) unless indicated. eNot identified, tentative molecular weight indicated.
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according to style (1 and 4) along PC1 (Figure 4) and the
variable loadings (Figure 4), which illustrate the most
important compounds based upon the relative loading values,
are generally in agreement with previously reported sensory
description of aged HVS wines arising from the formation of
compounds during wine aging reactions.12 The loading
directions infer that two compounds, 1-pentanol and ethyl-
decanoate, diminish in concentration within the wines during
aging (loadings are negative) which is in agreement with
previously reported measures of these volatile compounds in
young and aged HVS,28 bottle-aged Verdejo,29 and bottle-aged
Sauvignon blanc.30

Prediction of Sensory Scores from GC-MS Peaks. PLS
regression of the extracted peak areas across the sensory scores
was conducted using both PLS1 for single, and PLS2
algorithms for multiple, sensory attributes based upon the
sensory PARAFAC modeling. PLS2 models did not fit the data
more clearly and regression coefficients were more difficult to
interpret than PLS1 models for single attributes and therefore
only PLS1 models are presented. Sensory data are inherently
noisy (variable) and thus a conservative minimum value for R2

of 0.70, and a ratio of the range of sensory attribute scores to
the RMSEP of 5 or greater, analogous to the range error ratio,37

was used as a measure of the predictive value for each model
(Table 3). Sensory attributes for which good models were
established were honey, toast, orange marmalade, and sweet-
ness, and these sensory attributes were also those with the
largest range of panellist scores and which broadly help define
some of the most important sensory features of HVS styles.
The range of sensory scores for all attributes is relatively low
reflecting the subtle sensory profile of HVS, and attributes with
the largest range of sensory ratings tend to be those associated
with bottle age. The low range of sensory scores in this
investigation highlights the requirement for a well trained panel
that can reliably and consistently rate specific sensory attributes
so objective models of the sensory data can be derived from
GC-MS profiles. Identification of the peaks selected for PLS
regression models (Table 4) and examination of the regression
coefficients (Figure 5) reveals the relative change in peak area
and thus concentration of each compound in the PLS model.
For most compounds the regression coefficients are positive

indicating an increase in concentration of the compounds as the
sensory ratings increase and development during aging.
Although inspection of the regression coefficients offers

insight to the overall predictive power, it offers no insight to the
explanatory value of specific variables within the model. The
iPLS selection technique continuously adds variables until
convergence within the model. Consequently, peaks are
selected but may contribute only small improvements to the
predictive acuity once the most influential peaks have been
selected. The SR indicates the relative importance of the
variables in the predictive models based upon the explained
variance and has better discrimination for metabolomic studies
than variable importance in projection scores.38 A higher SR
means that the specific variable explains a greater proportion of
the variation for the predicted attribute. Based upon the SR, the

Figure 4. (A) Quartimax rotation of PCA scores with wines coded for style. (B) Rotated loadings from the PCA and peak number indicated on the
vertical axis. Darker loadings indicate absolute peak loadings exceeding the 90th percentile.

Table 3. Sensory Scores Mean, Range and PLS Regression
Model Performance for Prediction of Sensory Attributes
Using the Extracted Peak Table from MCR-ALS GC-MS
Profiles

sensory scores PLS model performance

sensory
attribute min max mean R2 RMSEP RERa LVb

lemon−lime 2.21 4.67 3.58 0.580 0.447 0.18 7
floral 0.83 2.97 1.63 0.256 0.482 0.23 2
grapefruit 1.21 2.83 2.15 0.397 0.469 0.30 6
pineapple 0.87 2.27 1.61 0.560 0.317 0.23 5
confectionery 0.52 2.35 1.11 0.321 0.396 0.32 3
hay/straw 1.49 3.63 2.63 0.346 0.511 0.24 5
grassy 0.52 2.40 1.37 0.573 0.418 0.22 4
asparagus 0.50 1.63 0.98 0.439 0.283 0.25 4
lychee 0.67 1.96 1.22 0.332 0.431 0.33 10
orange
marmalade

1.07 4.77 2.20 0.876 0.394 0.11 6

honey 2.03 6.87 3.65 0.824 0.580 0.12 4
toast 1.61 5.83 3.44 0.837 0.605 0.14 2
kerosene 1.48 3.43 2.49 0.480 0.526 0.27 5
acidity 4.03 6.10 5.06 0.689 0.422 0.48 6
sweetness 2.60 5.70 3.57 0.719 0.552 0.18 5
aRange error ratio (response range: RMSEP). bNumber of latent
variables used in regression modeling.
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most influential peaks have been identified for the predictive
models of sensory attributes with the largest range of sensory
scores.
The important compounds identified for predictive models

and their reported aromas are listed in Table 4. Most of these
compounds could be readily identified using matching data
from reported Kovats retention indices, NIST searches, and,
where available, analogous compounds run under the identical
instrumental conditions. The sensory acuity of honey was

modeled with the fewest compounds, the most important being
vanillin and 5-hydroxymethyfurfural (5HMF) and of lesser
importance ethyl-2-furoate. One compound associated with
honey aroma could not be identified and the SR for this
compound was low reflecting an overall low level of influence
for this compound. As mentioned previously, the presence of
vanillin in HVS is likely a consequence of bottle aging. Furanic
based compounds are important aroma constituents with their
formation arising from Maillard reactions and nonenzymatic

Table 4. Identity of Compounds with High Efficacy for Predictive Models of Sensory Attributes for HVS

predicted sensory
attribute peak compound CAS

Kovats
RI

Kovats RI
reporteda identifiedb reported aromac

honey 130 ethyl-2-furoate 614-99-3 1605 1599 43 RI, MS sweet 41

honey 233 5-hydroxymethyl furfural 67-47-0 2501 2410 43 RI, MS, cmp cardboard; blackberry 52

honey & toast 240 vanillin 121-33-5 2504 2555 51 RI, MS, cmp vanilla
toast 117 2,3-butanediol (R,R) 6982-25-8 1507 1523 53 RI, MS, cmp butter, cream
toast 153 diethyl-glutarate 818-38-2 1800 MS, cmp
toast 211 4-vinyl guaiacol 7786-61-0 2201 2192 45 RI, MS, cmp clove, curry
toast 245 3-oxo-α-ionol 34318-21-3 2603 2623 54 RI, MS spice
orange marmalade 51 3-penten-2-one 625-33-2 1118 1120 53 RI, MS, cmp fruity 55

orange marmalade 116 propanoic acid 79-09-4 1507 1523 53 RI, MS, cmp pungent, rancid, soy
orange marmalade 126 NID (MW 105)d 1601 MS
orange marmalade 128 3,7-dimethyl-1,5,7-octatrien3-ol 29957-43-5 1603 1586 56 RI, MS citrus, floral 57

orange marmalade 165 benzyl alcohol 100-51-6 1900 1883 58 RI, MS, cmp sweet, flower
orange marmalade 237 ethyl succinate 1070-34-4 2404 2440 59 RI, MS
orange marmalade 243 pyroglutamic acid, ethyl ester 7149-65-7 2602 MS
sweetness 58 ethyl hexanoate 123-66-0 1210 1239 51 RI, MS, cmp apple peel, fruit
sweetness 106 2-ethyl hexanol 104-76-7 1500 1446 43 RI, MS, cmp rose, green
sweetness 124 isobutyric acid 79-31-2 1511 1584 60 RI, MS, cmp rancid butter, cheese
sweetness 143 NID (MW 248) 1704
sweetness 175 2-phenyl ethanol 60-12-8 1902 1940 45 RI, MS, cmp honey, spice, rose
sweetness 180 ethyl-3-hydroxy-3-methylbutanoate† 18267-36-2 2001 MS
sweetness 181 2,6-dimethyl-7-ocene-2,6-diol 29210-77-3 2001 1949 55 RI, MS smoked, fruity 54

sweetness 217 NID (C13 norisoprenoid, MW 210) 2202 MS
sweetness 258 tyrosol 501-94-0 2750 3012 43 RI, MS

aRI: published retention indices for similar stationary phase. bMS: NIST mass spectral database match with minimum forward and reverse matching
of 800. cmp: matched compound with pure standards. cReported aromas from Flavornet (http://www.flavornet.org) unless indicated. dNot
identified, tentative molecular weight indicated.

Figure 5. Regression coefficients and selectivity ratios for peaks areas used for predictive models of sensory attributes. Peak identification numbers
appear above each bar.
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carbohydrate degradation. At low pH, furfural and 5-HMF form
from pentose and hexose condensation and rearrangement
reactions, respectively, and subsequent reactions result in the
formation of a variety of aroma compounds.39 The long-term
storage of foods in heat or in acidic environments enhances
their production and it expected that this class of compounds
would arise in aged HVS. Furfural is also a nonoxidative
degradation product of ascorbic acid40 and may accumulate
during the bottle aging of wines. The contribution of ethyl
furoate is of less importance to the perception of honey aroma
based upon the SR. This compound has also been reported to
be associated with the perception of sweet aromas in sherry
wines along with increases in concentration of 5HMF during
aging.41 Furoic acid can emanate from the oxidative
degradation of ascorbic acid42 and hence may form the ethyl
ester over time or with increased temperatures as reported
previously.30,32 The perception of toast is influenced chiefly by
five compounds which, in descending order of the SR, are
vanillin, diethyl glutarate, 4-vinyl guaiacol, 3-oxo-α-ionol, and
2,3-butandiol. With the exception of diethyl glutarate these
compounds have reported aromas of vanilla, clove/curry, spice,
and cream/butter, respectively. All of these compounds have
positive regression coefficients indicating they contribute
positively to increased toast aroma perception in the wines as
their concentration increases. The predictive model for orange
marmalade consists of a range of compounds with diverse
chemical class including alcohols, aliphatic acids, carbonyls,
norisoprenoids, and ethyl esters. Compounds modeled with
positive regression coefficients and large SR have reported
aromas of sweet, citrus, and floral (Table 4) with the most
important of these being benzyl alcohol. Of interest is the
inclusion of 3-penten-2-ol and ethyl succinate with negative
regression coefficients indicating the contribution of these
compounds diminishes as orange marmalade aroma intensifies
during bottle development. The SR for these compounds is
relatively small indicating a minor contribution to the overall
sensory rating for this attribute. One compound (peak 126) has
a moderate influence on the model, and could not be identified
based upon the stringent criteria used in this investigation, and
olfactory detection may be required to assist in the
authentication of this peak.
Of interest is the good model for sweetness which is typically

a mouthfeel attribute in wine and could reasonably be expected
to not model well with GC-MS data. The PLS model for
sweetness is the most complex of the models in this
investigation, consisting of 18 compounds with 2 of these not
identified. The diversity of the identified compounds,
regression coefficients, and SR for the compounds in this
model indicates a complex array of aromas associated with
sweetness. This is in agreement with the reported association of
the perception of sweetness in HVS with both floral and honey
attributes.12 The predictive models thus obtained from the GC-
MS profiles using MCR-ALS in this study enable the
elucidation of the chemical attributes associated with all
important sensory dimensions for the reported styles of HVS.
Identification of important marker compounds associated

with style and bottle age character provides clues to the
chemical development of HVS wine bouquet during aging. Full
descriptive sensory analysis of the wines conducted simulta-
neously with the GC-MS profiling has enabled good predictive
models of the sensory attributes that define HVS styles. While
the sensory attributes of honey, toast, and orange marmalade
appear to develop along a similar dimension during bottle aging

of HVS, it is clear from the PLS models that each sensory
character is composed of distinguishing compounds. With the
exception of vanillin, which is important for both honey and
toast, no other compound is replicated within the predictive
models. The use of SR for ranking the relative merit of
compounds associated with the prediction of sensory features
from the GC-MS data provides objective insight into the
importance of specific marker compounds associated with wine
sensory features. Future applications of rapid and automated
GC-MS data analysis will enable consumer preference ratings to
be more rapidly linked to objective instrumental measures and
ascertain the impact of wine production techniques upon the
composition of wine.
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